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Abstract

A common way to evaluate the performance of a sys-
tem is to compare the algorithmic outputs with ground
truth to identify divergences in the system’s perfor-
mance and discover the errors it is prone to. In the
absence of such ground truth or as a follow-on to per-
formance evaluation, performance analysis at the al-
gorithmic level can provide developers insight into per-
formance singularities. Such performance singularity
identification and testing provides real-time meta-data
that allows developers to understand the impact of sin-
gularities on the overall performance of the system. As
an example of the concepts developed in this paper, we
present a navigation solution based on image registra-
tion algorithms and the methodology used for the identi-
fication and testing of performance singularities of this
algorithm.

1. Introduction

At the National Institute of Standards and Tech-
nology (NIST), we have been developing test meth-
ods to classify the performance characteristics of a sys-
tem using quantitative metrics that facilitate the inter–
comparison of experimental results. De facto standard
testbeds provide a baseline that target specific aspects
of the system, allowing researchers to assess the per-
formance of various systems in different scenarios and
environmental conditions.

A common way to evaluate the performance of a sys-
tem is to compare the algorithmic outputs with ground
truth to discover irregularities and artifacts that exist.
In turn, these inconsistencies determined by such per-
formance evaluation are used to identify divergences
in the system’s performance and discover the errors

it is prone to. Performance analysis at the algorith-
mic level provides developers insight into performance
singularities (which we define as the point where an
algorithm fails to be well-behaved due to systematic
and non-systematic errors). Performance singularity
identification and testing provides real-time meta-data
that allows developers to understand the impact of sin-
gularities on the overall performance of a system.

As an example of the concepts developed in this pa-
per1, we will present a navigation solution based on im-
age registration algorithms and the methodology used
for the identification and testing of performance singu-
larities of this algorithm. The development of naviga-
tion solutions is motivated by urban search and rescue
applications where a mobile robot is required to tra-
verse undulating terrain and cope with unknown and
unstructured environments. This research will use the
baseline control framework, Mobility Open Architec-
ture Simulation and Tools (MOAST) [3], and a high-
fidelity simulation testbed, Unified System for Automa-
tion and Robot Simulation (USARSim) [5]. MOAST is
an open-source control framework for a wide range of
robotic systems in a variety of different domains. Since
the methods employed to formulate a stable navigation
solution are heavily dependent on the type of environ-
ment the system is operating in, the sensor capabilities,
and the conditions found in that environment, it is crit-
ical for MOAST to employ redundant methods of pose
estimation in order to develop a robust and stable nav-
igation solution. USARSim is being used as a testbed
to explore the performance characteristics of different
navigation solutions.

This paper is structured as follows: Section 2

1Commercial equipment and materials are identified in this
paper in order to adequately specify certain procedures. Such
identification does not imply recommendation or endorsement
by NIST, nor does it imply that the materials or equipment
identified are necessarily the best available for the purpose.



presents a brief overview of the high-fidelity simulation
testbed and the baseline control framework. Section 3
details the principles of an iconic navigation solution
that will be used as a basis to discuss the main theme
of this paper. In Section 4 the results, analysis, and
discussion of performance singularity identification and
testing are provided. Section 5 concludes the paper by
summarizing the findings and outlining our continuing
work.

2 High-Fidelity Simulation Testbed

Robotic simulation systems, such as [1, 2, 4], are
commonly used in the development of autonomous sys-
tems and advanced robotic algorithms. They provide
a cost-effective tool that enables developers to cus-
tomize repeatable testing scenarios to test specific as-
pects of autonomous navigation and mapping systems.
In order to provide convincing arguments about a sys-
tem’s performance and reliability, the simulation sys-
tems must be capable of capturing the stochastic na-
ture of a real world environment. USARSim [5] is an
open-source package that provides a high-resolution,
physics-based simulation that solves many of the prac-
tical problems faced by robotic simulators. Initially de-
veloped to support development of robotic algorithms
in the urban search and rescue environment, USAR-
Sim has expanded its core functionality to provide a
general-purpose, multi-agent simulation system with a
set of unique characteristics unmatched by other sim-
ulation systems. One of the most important charac-
teristics of this system is the robot and sensor models
validation[13]. Significant efforts on the validation of
simulated models in USARSim have resulted in close
correspondence between simulated data extracted from
USARSim and their real world counterparts [12, 9].

MOAST [3] is an open-source, turn-key hierarchical
control system that was originally developed to pro-
mote the research of advanced robotic algorithms [11].
Based on the 4–D Real-time Control System (4D/RCS)
architecture [6], MOAST provides a modularized hi-
erarchical framework that allows for the transparent
transference of data between a matrix of real and vir-
tual components. This framework is glued together
through well-defined interfaces, communications proto-
cols, and detailed specifications on individual subsys-
tem input/output (I/O) that allow developers to freely
swap components. Internal tools provide developers
with state-by-state, time-stamped snapshots that al-
low researchers to quantitatively measure and classify
the performance characteristics of new algorithms and
the means to analyze the overall impact on the system’s
performance by means of comparison.

Figure 1. USARSim provides virtual access
to existing test methods and robotic plat-
forms that enables users to refine assump-
tions about the environment and explore
novel sensor configurations.

Integration of USARSim’s high-fidelity models
with MOAST allows researchers to develop advanced
robotic algorithms, classify their performance charac-
teristics, and evaluate the overall impact of the algo-
rithms on a robotic system before implementation on
real robotic hardware. The availability of simulated
reference test methods, as shown in Figure 1, allows
researchers to refine assumptions about domains that
they will eventually operate in. Due to space con-
straints, this section has presented only a brief overview
of MOAST and USARSim. For further details on ei-
ther of these systems, please refer to the system manual
for MOAST [3] and USARSim [5].

3 Navigation Solutions using Visual
Odometry

In this paper, the notion of a navigation solution
will be defined as “the system’s ability to sense the en-
vironment, create internal representations of its envi-
ronment, and estimate pose, consisting of position and
orientation, with respect to a fixed coordinate frame”.
The urban search and rescue environment presents an
extremely harsh environment that does not guarantee
static landmarks or the presence of geometric primi-
tives used as reference markers in many navigation so-
lutions. For such environments, we have employed an
iconic approach, termed Visual Odometry (VO), that
uses direct correlation of unprocessed data. Using un-
processed data will eliminate the need to define fea-
ture models and avoid misclassification due to imper-
fect sensor models. This technique, referred to in the
literature as a scan matching technique, uses extero-



ceptive sensors which is an important intermediate step
that will lead to an absolute navigation solution. Ab-
solute navigation solutions have the advantage of being
independent of the errors that arise in relative naviga-
tion solutions, thus providing a method for keeping the
resulting errors bounded. Based on a fine range image
registration method, known as Iterative Closest Point
(ICP) algorithm [8], VO uses point-to-point correspon-
dences in consecutive sets of data points obtained from
a laser range finder (scans) to compute relative pose
estimates. In its simplest form, this navigation solu-
tion computes these pose estimates using a maximum
likelihood alignment to find the best fit between two
sets of data points as shown below:

1. For each point in data set D, compute its nearest
neighbor in data set M.

2. Compute the incremental transformation (R,T)
using Singular Value Decomposition (SVD) based on
correspondences obtained in step 1.

3. Apply the incremental transformation from step
2 to D.

4. If relative changes in R and T are less than
a predetermined threshold or a tolerable number of
iterations is exceeded, terminate. Else go to step 1.

Recent improvements in the search strategy for find-
ing data associations between the two sets of data has
made this algorithm a computationally efficient way of
generating navigation solutions in environments with
minimal structure [10]. However, shortcomings in the
basic ICP algorithm can lead to erroneous pose esti-
mates, jeopardizing the integrity of the Visual Odome-
try algorithm [7]. In order to improve the convergence
characteristics and to yield more accurate results, we
need to implement techniques that will assist this algo-
rithm to deal with spurious points/false matches and to
account for occlusions and outliers produced by these
shortcomings. Understanding such shortcomings of a
particular algorithm can provide insight into the per-
formance singularities that might arise in the naviga-
tion solutions and will provide insight into how to over-
come these singularities. Below we identify two short-
comings of the VO algorithm and then discuss plausible
solutions that will be used to evaluate the performance
characteristics of the resulting navigation solutions in
Section 4.

3.1 Data Association

Point-to-point data association used by the basic VO
algorithm treats scan data as a set of discrete loca-
tions. This association of the data points is used to
derive a transformation between the successive scans

Figure 2. Pseudo point matching is a vari-
ant of a point-to-plane data association tech-
nique that is an alternative to point-to-point
data association.

to estimate relative movement of the vehicle. However,
the data in a scan represents a surface and not a set
of discrete locations. This can lead to spurious point
matching and can cause errors in the pose estimate.
Pseudo point matching is a point-to-plane data asso-
ciation technique that approximates the real distance
between a point and a plane [14] (shown in Figure 2).
We establish correspondence with a virtual point, qc,
that is the closest point on the line defined by q1 and
q2 using the relation:

qc = q1 +
(pi − q1) • (q2 − q1)

‖q2 − q1‖2
(q2 − q1)

3.2 Thresholding

The least-square objective function used in the ba-
sic VO algorithm has no means to tackle uncertainties
inherent in sensor data and to evaluate the validity of
correspondences. This means that all correspondences
between the data points are equally weighted. In order
to deal with spurious points/false matches and to ac-
count for occlusions and outliers, we modify and weight
the least-squares objective function such that:

min(R,T)

∑
i

wi ||Mi − (RDi + T) ||2 (1)

If the Euclidean distance between a point pi in one
set and its closest point qi in the other, denoted by di

4
=

d(pi, qi), is bigger than the maximum tolerable distance
threshold Dmax, then wi is set to zero in Equation (1).
This means that an pi cannot be paired with a qi since
the distance between reasonable pairs cannot be very
big. The value of Dmax can be set in one of two ways:

1. adaptively in a robust manner by analyzing dis-
tance statistics [14] or



(a) The use of the reference data sets that include
ground truth of vehicle pose and visualization tools can
provide developers with a map that can be used to bet-
ter understand the nature of the environment that is
being mapped.

(b) Visual Odometry produces pose estimates that can
be used to create a cumulative sensor map. This map
produces insight into the internal representations of a
navigation solutions.

Figure 3. Comparisons of the ground truth maps with maps produced by navigation solutions is the
first step in the performance identification and testing of navigation solutions. These comparisons
can help identify areas where performance singularities arise.

2. statically using a user defined threshold

The threshold is implemented with respect to two ob-
servations: (a) If Dmax is too small, then several iter-
ations are required for the algorithm to converge and
several good matches will be discarded, and (b) If Dmax

is too big, then the algorithm may not converge at all
since many spurious matches will be included.

4 Performance Singularity Identifica-
tion and Testing

Fundamental to the success of the performance sin-
gularity identification and testing is the development
of reference data sets and visualization tools. Refer-
ence data sets allow for repeatable trials and the inter–
comparison of the results between different navigation
solutions. Visualization tools provide developers with
a mechanism to gain insight into the nature of the en-
vironment and the internal representations contained
in the navigation solutions.

The reference data set used in this research, shown
in Figure 3(a), was captured using MOAST to tele-
operate a simulated P2AT2 in an elemental mapping
test world developed in USARSim to test autonomous

2ActivMedia Pioneer 2-AT all-terrain robotic platform.

mapping capabilities of the teams at the 2007 Vir-
tual RoboRescue Competition. The DM-Mapping_250
world (available on the USARSim home page) consists
of several sections with varying degrees of complexity
in terms of features and mobility characteristics. The
data logged from this data set is used for the perfor-
mance evaluation of navigation solutions.

In this text, a cumulative sensor map refers to a
composite map consisting of raw sensor data mapped
into a relative coordinate frame using the pose esti-
mate from the navigation solution (no filtering data
or pruning of the map). Close examination of the cu-
mulative map produced by the Visual Odometry so-
lutions, shown in Figure 3(b), illustrates the integrity
and robust nature of an exteroceptive approach to for-
mulating a navigation solution with only marginal er-
rors being produced in the top-right corner of the map.
The confined nature of this error suggests that a per-
formance singularity occured during the second half of
the run. The performance evaluation will assist us to
locate where and when the singularity occured.

4.1 Performance Evaluation

Ground truth information of the vehicle’s pose is
essential to the quantitative performance evaluation of



(a) Error plot shows the error in the X-axis with re-
spect to the relative coordinate frame of theof the INS,
Encoder-Based Odometry, and VO.

(b) Error plot shows the error in orientation of the INS,
Encoder-Based Odometry, and VO.

Figure 4. Decomposing the translational and rotational errors in the individual components helps to
pin-point areas where errors are arise in the navigation solutions. This can help identify singularities
and provide insight into the errors that a specific navigation solution is prone to.

navigation solutions. It facilitates the decomposition of
the errors arising in the navigation solution and shows
the overall performance of different navigation solu-
tions. Visual inspection of the cumulative map and
the decomposition of the errors show where the navi-
gation solution diverges and provides the tools to iden-
tify specific areas or situations where performance sin-
gularities lead to divergence. Examining Figures 4(a)
and 4(b) suggests that the VO-based navigation solu-
tions are more resilient to the systematic errors found
in dead-reckoning sensors. However, these decomposi-
tions shows a significant spike in between 150 and 200
seconds. This spike, occuring about three-quarters into
the run, suggests the presence of a performance singu-
larity (e.g. hitting a wall) that may have led to the
discontinuities observed in the cumulative sensor map
for Visual Odometry.

4.2 Performance Analysis

In order to yield more accurate results, it is impor-
tant to analyze the convergence characteristics and how
the obtained correspondences affect the performance
of the VO algorithm. In this section, we examine four
variants of the VO algorithm that use a permutation of
data association and thresholding techniques discussed
in Sections 3.1 and 3.2, respectively.

Analyzing the correspondences help developers to

better understand the convergence characteristics of a
given navigation solution. The rejection rate of the
modified least-square objective function discussed in
Section 3.2 can be derived from the number of valid
correspondences found at each iteration as depicted in
Figure 5(a). In this figure, notice that the number
of correspondences found by the adaptive thresholding
technique at each iteration is monotonically decreasing
whereas those obtained by the static thresholding tech-
nique appear to be monotonically increasing thus ef-
fectively lowering the rejection rate to a minimum. As
mentioned in Section 3.2, equally weighting all corre-
spondences can lead to the inclusion of spurious points
causing erroneous pose estimations.

The convergence profiles shown in Figure 5(b) pro-
vides an insight into how well the algorithms converge
to a solution and ultimately how accurate those solu-
tions are. This figure shows the VO algorithms that
implement the adaptive thresholding technique con-
verges quicker than the solutions using a static thresh-
old. However, once the solutions start to converge to
an estimate, the pseudo-point matching technique out-
performs the point-to-point data association used in
the basic VO algorithm.

5 Conclusions and Continuing Work

Performance evaluation of a system can be used to
identify divergences in the system’s performance and



(a) Correspondence analysis provides an insight in the
quality of the registration techniques.

(b) Convergence characteristics shows how well and how
accurately the Visual Odometry algorithms converges
to a solution between two set of scans.

Figure 5. Performance analysis of the variants of the Visual Odometry solutions. The “nn” refers
to point-to-point data associations, where the “interp” refers to pseudo-point matching discussed
in Section 3.1. The “at” stands for adaptive thresholding, where the “dist” indicates that a static
threshold was used, both discussed in Section 3.2.

discover the errors it is prone to by comparing algorith-
mic outputs with ground truth. As a follow-on process
or in the absence of ground truth, performance analysis
at the algorithmic level can provide developers insight
into performance singularities. Such performance sin-
gularity identification and testing that provides real-
time meta-data to understand the impact of singulari-
ties on the overall performance of the system was the
main theme of this paper. We demonstrated some of
these ideas using a high-fidelity simulation testbed in
the context of navigation solutions for mobile robots.

Our continuing research seeks to develop test meth-
ods to classify the performance characteristics of navi-
gation solutions that facilitate the inter-comparison of
experimental results. The development of a de facto
standard testbed for evaluation of navigation solutions
will provide a baseline for comparison and the means
to target specific aspects of the system, allowing re-
searchers to assess the performance of various systems
in different scenarios and environmental conditions.
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